Fundamental Concepts of Topology

Caleb Torres

April 22, 2018

1 Introduction

The aim of this project is to demonstrate and verify several topological definitions and examples in order to convey a firm understanding of the most basic concepts in topology. The examples range across many different topological concepts, and reflect a necessary foundation for pursuing further coursework in topology.

2 Topological spaces, (X, \mathcal{O}) .

Definition: A topological space is a set X together with a collection O of subsets of X called *open sets* such that:

- 1. The union of any collection of sets in $\mathcal O$ is in $\mathcal O$.
- 2. The intersection of any finite collection of sets in $\mathcal O$ is in $\mathcal O$.
- 3. Both \emptyset and X are in \mathcal{O} .

The following examples give six topological spaces, (X_i, \mathcal{O}_i) , defined by a set X_i together with a topology \mathcal{O}_i .

- 1. $X_1 = \{a, b\}$ $\mathcal{O}_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}.$
- 2. $X_2 = \{a, b, c\}$ $\mathcal{O}_2 = \{X, \emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}.$
- 3. $X_3 = \{a, b, c\}$ $\mathcal{O}_3 = \{X, \emptyset\}.$
- 4. $X_4 = \{a, b, c, d\}$ $\mathcal{O}_4 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}.$
- 5. $X_5 = \{a, b\}$ $\mathcal{O}_5 = \{X, \emptyset, \{a\}\}.$
- 6. $X_6 = \{a, b, c, d, e, f\}$ $\mathcal{O}_6 = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e, f\}\}.$

3 Open subsets of a topological space (X, \mathcal{O}) .

A set U is open in a topological space (X, \mathcal{O}) if $U \subseteq \mathcal{O}$. The following examples give several open subsets U_i which are open on a specific topological space (X, \mathcal{O}) .

For a topological space consisting of

$$
X = \{a, b, c\} \quad \mathcal{O} = \{X, \emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}.
$$

let U_i denote the following open subsets in the topological space (X, \mathcal{O}) defined above.

$$
U_1 = \{b\} \quad U_2 = \{c\}
$$

$$
U_3 = \{a, b\} \quad U_4 = \{b, c\}
$$

$$
U_5 = \{a, b, c\} \quad U_6 = \emptyset
$$

4 Closed subsets of a topological space (X, \mathcal{O}) .

Definition: A subset A of a topological space X is closed if its complement, $X - A$, is open.

The following examples give several closed subsets C_i which are subsets of a particular topological space $(X, \mathcal{O}).$

For a topological space consisting of

$$
X = \{a, b, c\} \quad \mathcal{O} = \{X, \emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}.
$$

let C_i denote the following closed subsets in the topological space (X, \mathcal{O}) defined above.

$$
C_1 = \{c\} \quad C_2 = \{a\}
$$

$$
C_3 = \{a, c\} \quad C_4 = \{a, b\}
$$

$$
C_5 = \emptyset \quad C_6 = \{a, b, c\}
$$

5 Interior, closure, and boundary of (X, \mathcal{O}) .

Given a subset A of a topological space X, then for each point $x \in X$ exactly one of the following holds:

- 1. There exists an open set O in X with $x \in O \subset A$.
- 2. There exists an open set O in X with $x \in O \subset X A$.
- 3. Every open set O with $x \in O$ meets both A and $X A$.

Points x where (1) hold form a subset of A called the interior of A or $int(A)$. The points x where (3) holds form a set called the boundary or frontier of A, denoted as ∂A . The points x where either (1) or (3) hold are the points x such that every open set O containing x meets A . Such points are called the limit points of A, and the set of these limit points is called the closure of A, written \overline{A} .

For a topological space consisting of

$$
X = \{a, b, c, d, e, f\} \quad \mathcal{O} = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e, f\}\}.
$$

let A_i denote any subset of X. Let $int(A_i)$ denote the interior of the set A_i , \overline{A}_i the closure of the set A_i , and ∂A_i the boundary of the set A_i .

$$
A_1 = \{a, b, c, d\}, \quad int(A_1) = \{a, c, d\}, \quad \bar{A}_1 = \{a, b, c, d, e, f\}, \quad \partial A_1 = \{b, e, f\}.
$$

$$
A_2 = \{a, c, f\}, \quad int(A_2) = \{a\}, \quad \bar{A}_2 = \{a, b, c, d, e, f\}, \quad \partial A_2 = \{b, c, d, e, f\}.
$$

$$
A_3 = \{a, b, d\}, \quad int(A_3) = \{a\}, \quad \bar{A}_3 = \{a, b, c, d, e, f\}, \quad \partial A_3 = \{b, c, d, e, f\}.
$$

6 Basis β for a topological space (X, \mathcal{O}) .

Definition: Let (X, \mathcal{O}) be a topological space. A collection \mathcal{B} of open subsets of X is said to be a basis for the topology $\mathcal O$ if every open set in the space is a union of members of $\mathcal B$.

Thus, a basis β for a topology on X satisfies the following two properties.

- 1. Every point $x \in X$ lies in some set $B \in \mathcal{B}$.
- 2. For each pair of sets B_1, B_2 in β and each point $x \in B_1 \cap B_2$, there exists a set B_3 in β where $x \in B_3 \subset B_1 \cap B_2.$

The following examples are bases \mathcal{B}_i of a given a topology $\mathcal O$ and set X.

For a topology $\mathcal{O} = \{X, \emptyset, \{a, b\}, \{a\}, \{b\}\}\$, on a set $X = \{a, b\}$. Consider two bases

$$
\mathcal{B}_1 = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}, \quad \mathcal{B}_2 = \{\emptyset, \{a\}, \{b\}\}.
$$

For another topology, with $X = \mathbb{R}$, let the topology $\mathcal O$ be defined by the basis

$$
\mathcal{B}_3 = \{(a, b) \mid a, b \in \mathbb{R} \quad and \quad a < b\}
$$

where $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$. We may conclude that \mathcal{B}_3 is a basis for a topology \mathcal{O} on the set X, since for every $x \in R$ there exists an interval $(x-2, x+2)$ in \mathcal{B}_3 which contains x. This means that for every point x in the real numbers, x is contained in the set $(x-2, x+2)$, which is a set B found in the basis \mathcal{B}_3 .

Next, considering an arbitrary pair of sets in \mathcal{B}_3 , $B_1 = (a, b)$ and $B_3 = (c, d)$ which overlap, note an arbitrary point $x \in B_1 \cap B_2$. There exists an interval $B_3 = (max\{a, c\}, min\{b, d\})$ such that $x \in B_3 \subseteq B_1 \cap B_2$. Another basis, \mathcal{B}_4 for constructing a topology on the set $X = \mathbb{R}$ may be

$$
\mathcal{B}_4 = \{ (r, s) \mid r, s \in \mathbb{Q} \quad and \quad r < s \}.
$$

where $(r, s) = \{x \in \mathbb{R} \mid r < x < s\}$. We may conclude that \mathcal{B}_4 is a basis for a topology \mathcal{O} on the set X, since for every $x \in \mathbb{R}$ there exists an interval (r, s) in \mathcal{B}_4 which contains x. This means that for every point x in the real numbers, x is contained in the set (r, s) , which is a set B found in the basis \mathcal{B}_4 .

Next, considering an arbitrary pair of sets B in \mathcal{B}_4 , $B_1 = (r_1, s_1)$ and $B_3 = (r_2, s_2)$ which overlap, note an arbitrary point $x \in B_1 \cap B_2$. There exists an interval $B_3 = (max{r_1, r_2}, min{s_1, s_2})$ such that $x \in B_4 \subseteq B_1 \cap B_2.$

7 Functions as metrics on a set X

Let X be a non-empty set and d a real-valued function defined on $X \times X$ such that for $a, b \in X$:

- 1. $d(a, b) \geq 0$, and $d(a, b) = 0$ if and only if $a = b$.
- 2. $d(a, b) = d(b, a)$
- 3. $d(a, c) \leq d(a, b) + d(b, c)$ for all a, b and c in X.

Thus, d is said to be a metric on X, and (X, d) is denoted as a metric space. Also, $d(a, b)$ is recognized as the distance between a and b.

Next, let d_i denote a function $\{(x, y) | x, y \in X_i\} \longrightarrow \mathbb{R}$ that is a metric on a set X_i . Here are some examples.

For $X = \mathbb{R}$, let the function $d_1: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ be defined by

$$
d_1(a,b) = \begin{cases} 0 & \text{if } a = b \\ 1 & \text{if } a \neq b \end{cases}
$$

For $X = \mathbb{R}^2$, let the function d_2 : $\mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by

$$
d_2 = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}
$$

For $X = \mathbb{R}$, let the function $d_3: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ be defined by,

$$
d_3 = |a - b|.
$$

such that $a, b \in \mathbb{R}$.

8 Open balls on metric spaces

Let us define the set of open balls $B_r(x_j)$ on a metric space d_i for a given set X_i as

$$
B_r(x_j) = \{ y \mid y \in X \quad and \quad d(x, y) < r \}.
$$

The open balls have radius r and are centered at x . Here are some examples.

1. For $X = \mathbb{R}$, let the function $d_1: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ be defined by

$$
d_1(a,b) = \begin{cases} 0 & \text{if } a = b \\ 1 & \text{if } a \neq b \end{cases}
$$

Three open balls on this metric can be expressed as:

1.
$$
B_2(1) = \{y \mid y \in \mathbb{R} \text{ and } d_1(1, y) < 2\}
$$

2.
$$
B_5(2) = \{y \mid y \in \mathbb{R} \text{ and } d_1(2, y) < 5\}
$$

3. $B_{\frac{1}{2}}(0) = \{y \mid y \in \mathbb{R} \text{ and } d_1(0, y) < \frac{1}{2}\}$

2. For $X = \mathbb{R}^2$, let the function $d_2 \colon \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by

$$
d_2(\langle a_1, b_1 \rangle, \langle a_1, b_2 \rangle) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}
$$

Three open balls on this metric can be expressed as:

1.
$$
B_2(\langle 1, 3 \rangle) = \{ \langle y_1, y_2 \rangle | \langle y_1, y_2 \rangle \in \mathbb{R}^2 \text{ and } d_2(\langle 1, 3 \rangle, \langle y_1, y_2 \rangle) < 2 \}
$$

\n2. $B_5(\langle 2, 4 \rangle) = \{ \langle y_1, y_2 \rangle | \langle y_1, y_2 \rangle \in \mathbb{R}^2 \text{ and } d_2(\langle 2, 4 \rangle, \langle y_1, y_2 \rangle) < 5 \}$
\n3. $B_{\frac{1}{2}}(\langle 0, 6 \rangle) = \{ \langle y_1, y_2 \rangle | \langle y_1, y_2 \rangle \in \mathbb{R}^2 \text{ and } d_2(\langle 0, 6 \rangle, \langle y_1, y_2 \rangle) < \frac{1}{2} \}$

3. For $X = \mathbb{R}$, let the function $d_3: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ be defined by,

$$
d_3(a,b) = |a-b|.
$$

such that $a, b \in \mathbb{R}$.

Three open balls on this metric can expressed as:

\n- 1.
$$
B_3(4) = \{y \mid y \in \mathbb{R} \text{ and } d_3(4, y) < 3\}
$$
\n- 2. $B_{\frac{7}{8}}(7) = \{y \mid y \in \mathbb{R} \text{ and } d_3(7, y) < \frac{7}{8}\}$
\n- 3. $B_{10}(9) = \{y \mid y \in \mathbb{R} \text{ and } d_3(9, y) < 10\}$
\n

9 Collection of all open balls $B_r(x)$ as a basis

Let us consider the Euclidean metric on $\mathbb R$ as mentioned previously. That is, for $X = \mathbb R$, let the function $d:(a,b)$ from $\mathbb{R}\times\mathbb{R}\longrightarrow\mathbb{R}$ be defined by,

$$
d = |a - b|.
$$

such that $a, b \in \mathbb{R}$.

The collection of all open balls with this metric may be considered a basis such that

$$
\mathcal{B} = \{B_r(x) \mid x \in X, r \in \mathbb{R}, r > 0\}.
$$

For the Euclidean metric on \mathbb{R} , $B_r(x)$ is the open interval $(x-r, x+r)$. Thus, We may conclude that β is a basis for a topology O on the set X, since for every $x \in \mathbb{R}$ there exists an interval $(x - r, x + r)$ in B which contains x. This means that for every point x in the real numbers, x is contained in the set $(x - r, x + r)$, which is a set B found in the basis B .

Next, considering an arbitrary pair of sets B in B, $B_1 = (a-r, a+r)$ and $B_2 = (b-r, b+r)$ which overlap, note an arbitrary point $x \in B_1 \cap B_2$. There exists an interval $B_3 = (max\{a - r, b - r\}, min\{a + r, b + r\})$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

10 Continuous functions between topological spaces

Consider the definition of continuous function:

Definition: Let (X, \mathcal{O}_x) and (Y, \mathcal{O}_Y) be topological spaces and f a function from X into Y. Then f: $(X, \mathcal{O}_x) \longrightarrow (Y, \mathcal{O}_Y)$ is said to be a continuous mapping if for each $U \in \mathcal{O}_Y, f^{-1}(U) \in \mathcal{O}_x$.

Let us now consider three continuous functions between two topological spaces. Let us denote f_i as a continuous function between two topological spaces.

1. $f_1 : \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f(x) = x.
$$

and the topology $\mathcal{O}_{\mathbb{R}}$ on $\mathbb R$ comes from the basis of open intervals in $\mathbb R$ such that

$$
\mathcal{B}_{\mathbb{R}} = \{ (m, M) \mid m < M \}.
$$

2. $f_2 : \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f(x) = c.
$$

and the topology $\mathcal{O}_{\mathbb{R}}$ on $\mathbb R$ comes from the basis of open intervals in $\mathbb R$ such that

$$
\mathcal{B}_{\mathbb{R}} = \{ (m, M) \mid m < M \}.
$$

3. $f_3 : \mathbb{R} \longrightarrow Y$ such that

$$
f(x) = \begin{cases} n & \text{if } x < 0 \\ z & \text{if } x = 0 \\ p & \text{if } x > 0 \end{cases}
$$

and $Y = \{p, n, z\}$, where the topology topology $\mathcal{O}_{\mathbb{R}}$ on \mathbb{R} comes from the basis of open intervals in \mathbb{R} such that

$$
\mathcal{B}_{\mathbb{R}} = \{ (m, M) \mid m < M \},
$$

and the topology \mathcal{O}_Y on Y is

$$
\mathcal{O}_Y = \{\{p, n, z\}, \emptyset, \{p\}, \{n\}, \{p, n\}\}.
$$

11 Demonstrating continuity of a function

Consider the function $f:\mathbb{R}\longrightarrow Y$ such that

$$
f(x) = \begin{cases} n & \text{if } x < 0 \\ z & \text{if } x = 0 \\ p & \text{if } x > 0 \end{cases}
$$

and $Y = \{p, n, z\}$, where the topology $\mathcal{O}_{\mathbb{R}}$ on \mathbb{R} comes from the basis of open intervals in \mathbb{R} such that

$$
\mathcal{B}_{\mathbb{R}} = \{ (m, M) \mid m < M \},
$$

and the topology \mathcal{O}_Y on Y is

$$
\mathcal{O}_Y = \{ \{p, n, z\}, \emptyset, \{p\}, \{n\}, \{p, n\} \}.
$$

Lemma 1 in Hatcher's notes states that "A function $f: X \longrightarrow Y$ is continuous if and only if $f^{-1}(C)$ is closed in X for each closed set C in Y ."

We have the closed sets in Y as

$$
\{n, z\}, \{z\}, \{p, z\}.
$$

These sets are closed since their compliments, $X - U_i$, are open in \mathcal{O}_Y as shown:

1. $Y \setminus \{n, z\} = \{p\}$

- 2. $Y \setminus \{z\} = \{p, n\}$
- 3. $Y \setminus \{p, z\} = \{n\}$

We then have the pre-images of these closed sets in Y.

- 1. $f^{-1}(\lbrace n, z \rbrace) = (-\infty, 0]$
- 2. $f^{-1}(\{z\}) = [0]$
- 3. $f^{-1}(\{p, z\}) = [0, \infty)$

They are all closed in X . Lemma 1 is satisfied.

Lemma 2 in Hatcher's notes states that "given a function $f: X \longrightarrow Y$ and a basis B for Y, then f is continuous if and only if $f^{-1}(B)$ is open in X for each $B \in \mathcal{B}$."

The topology \mathcal{O}_Y on Y defined as

$$
\mathcal{O}_Y = \{\{p, n, z\}, \emptyset, \{p\}, \{n\}, \{p, n\}\}.
$$

is also a basis \mathcal{B}_Y . Thus, we must show that the pre-image of each subset B of \mathcal{B}_Y is open in X.

We have the pre-image of each subset B in \mathcal{B}_Y .

- 1. $f^{-1}(\{p, n, z\}) = \mathbb{R}$
- 2. $f^{-1}(\emptyset) = \emptyset$
- 3. $f^{-1}(\{p\}) = (0, \infty)$
- 4. $f^{-1}(\{n\}) = (-\infty, 0)$
- 5. $f^{-1}(\lbrace p,n \rbrace) = (-\infty,0) \cup (0,\infty)$

As shown, the pre-image of each each set B in \mathcal{B}_Y is open in X. Thus, the function is continuous.

12 Homeomorphism between distinct sets

Let us consider the definition of a homeomorphism.

Definition: Let (X, \mathcal{O}_x) and (Y, \mathcal{O}_Y) be topological spaces. Then they are homeomorphic if there exists a function $f: X \longrightarrow Y$ which has the following properties:

- 1. f is injective; $f(x_1) = f(x_2)$ implies $x_1 = x_2$.
- 2. f is surjective; for any $y \in Y$, there exists an $x \in X$ such that $f(x) = y$.
- 3. For each $U \in \mathcal{O}_Y$, $f^{-1}(U) \in \mathcal{O}_x$.
- 4. For each $V \in \mathcal{O}_x$, $f(V) \in \mathcal{O}_Y$.

The follwing is an example of a homeomorphism between the sets

$$
X = \{a, b, c, d, e\}, \quad Y = \{g, h, i, j, k\}
$$

with respective topologies

$$
\mathcal{O}_X = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}, \quad \mathcal{O}_Y = \{Y, \emptyset, \{g\}, \{i, j\}, \{g, i, j\}, \{h, i, j, k\}\}.
$$

Let the homeomorphism be defined by the function $f: X \longrightarrow Y$ such that

$$
f = \{a \longmapsto g, b \longmapsto h, c \longmapsto i, d \longmapsto j, e \longmapsto k\}.
$$